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Introduction: The propagating RF phase (∠B1
+B1

-, [1]) is often encountered as a disadvantage in MRI, because it causes a spatially varying excitation pattern due to 
interference between the fields. In this abstract we use the propagating RF phase to our advantage, since it contains information about the local permittivity and 
especially conductivity. This new contrast can be used to image structures with higher (or lower) conductivity than its surrounds such as CSF and more clinically 
relevant high conducting breast tumours [2].  
 
Theory: From basic EM theory we know that the wavelength, thus the propagating phase, depends on the 
permittivity and conductivity. For simple structures we can calculate the effect of local differences 
algebraically, but for complex structures as the head, we have to solve the problem numerically, for example 
using FDTD. Our first interest was to determine if contrast in the propagating RF phase is mainly due to 
changes in the local conductivity (σ) or the relative permittivity (εr). We investigated the effect at 7T by 
simulating a sphere (r= 7.5 cm, σ = 1S/m εr=40) containing a smaller sphere (r = 2 cm) with different 
conductivities (0.005, 0.5, 1.0, 1.5 and 2.0 S/m) and relative permitivities (1, 20, 40, 60, 80) within the 
physiological range. The results of these simulations are shown in figure 1. To visualize the effect, we show a 
subtraction with a sphere without contrast (inner sphere: σ = 1S/m εr=40), to remove the global RF phase. In 
this overview we see clearly that the conductivity has the largest contribution to the local RF phase in the 
investigated range. Therefore we focus on contrast in conductivity in the rest of this abstract. 
 
Methods: The effect of the local changes in conductivity on the propagating RF phase were simulated using 
FDTD. The geometry of interest was placed in a 7T high-pass birdcage coil. Measurements were performed 
in a 7T scanner (Achieva, Philips Medical Systems, Best, the Netherlands) using the same head coil. We 
measured the propagating RF phase by extracting φ0 contributions from the signal phase [3] using two 
separate GRE measurements with a different TE (TE1 = 2ms, TE2 = 3ms, TR = 300ms, resolution phantom 
2x2x5mm, resolution in vivo 2.5x2.5x5 mm), while keeping all other parameters constant. To prevent phase 
wraps, B0 shimming was applied. To improve sensitivity we increased NSA (phantom: 32, in vivo: 2). The 
measurement time was in the order of minutes. 
 
Materials: The effect was measured in a phantom consisting of two coaxial cylinders filled with agarose gel. The boundary between the cylinders consists of a 65 um 
thick layer of rubber-latex. Three of these phantoms were constructed; in the inner cylinder NaCl (0 g/L, 5g/L and 10g/L) was added to the gel to increase the 
conductivity (σ =0.04, 0.9 and 1.73 S/m, resp.). To measure the effect in vivo we choose the head, which contains the ventricles, a cavity filled with the highly 
conducting CSF (cerebrospinal fluid, σ =2.22 S/m). The ventricles are surrounded by the less conducting white matter (WM, 0.41 S/m).  

 
Results: In figure 2 and 3 we show the results of the phantom 
measurements. Here it is shown that the increase in RF phase 
contrast for a higher conductivity as predicted by the 
simulations (figure 2) is also measured (figure 3). In figure 4 
we show the results of the in vivo measurements. For visibility 
purposes we show the derivative of the propagating phase for 
the head measurements, because the large global variation of 
the phase obscures the small local changes. At the location of 
the ventricle (indicated by the arrow) a local minimum in the 
derivative of the RF phase is present, in the simulations (B) as 
the well as the measurements (A). 
 
Conclusion and discussion: We have shown, that it is possible 
to measure local variations in the propagating RF phase, which 
is most strongly present in case of contrast in conductivity. We 
were able to measure the effect in phantoms and in vivo with 
good correlation with simulations. To visualize local changes 
in the RF phase, one needs to remove the global RF phase 
behaviour. Here we have shown images based on the 
derivative, which improves contrast. A possible application of 
this technique is shown in a simulation in figure 5. In these 
simulations a fatty breast containing a sphere-like tumour with 
a high conductivity (0.9 S/m) as found in breast cancer 
literature is simulated for a quadrature dual loop coil [2,4]. In 
the post-processed image (figure 5 C) the tumour location is 
clearly visible. Therefore this technique might be very useful in 
detecting conducting malignancies. 
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Figure 1: Conductivity and permittivity induced 
contrast in the propagating RF phase. Difference 
images. 

 
Figure 2: FDTD simulations of the RF phase for 
the coaxial phantom. A) σinner =0.04 S/m B) σinner 
=0.9 S/m C) σinner =1,73 S/m 

 
Figure 3: Measurement of the RF phase for 
the coaxial phantom. A) σinner =0.04 S/m B) 
σinner =0.9 S/m C) σinner =1,73 S/m 

 
 
Figure 4: Sagital plane RF phase image. 
Visibility of local RF phase contrast is improved 
by displaying the derivative along y and z (sum). 
A) measurement. B) simulation. 

 
Figure 5: Sagital plane RF phase image of a 
breast containing a tumour (simulation). A) 
Anatomy with the tumour in red. B) 
Propagating RF phase C) Derivative along z 
of B. 
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