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Introduction 
Bootstrap methods were recently introduced in diffusion tensor imaging (DTI) to investigate the measurement precision of tensor derived parameters 
such as the apparent diffusion coefficient or the fractional anisotropy (FA) value [1-5]. Furthermore, the cone of uncertainty (CU) [2] provides an 
estimation of the variation in the direction of the tensor’s principal eigenvector. This variation is used in probabilistic fiber tracking algorithms and in the 
computation of connectivity maps [6,7]. Likewise, graph theory was recently applied to DTI data to assess connectivity maps [8,9]. In this work, bootstrap 
estimates are combined with graph theory for improved probabilistic tractography and, eventually, connectivity maps.  
 
Methods 
Data acquisition: Data were acquired on the Philips Achieva 3T system (Philips Healthcare, Best, the Netherlands) using a diffusion-weighted single-shot 
spin-echo EPI sequence with the following scan parameters: FOV = 210 x 210 mm2, matrix = 104 x 102, reconstructed to = 112 x 112, 50 contiguous 
slices, slice thickness = 2 mm, SENSE factor = 2.1, TE = 43 ms. Diffusion-weighted scans were performed along 30 directions distributed uniformly on a 
sphere with a maximum b-factor of 1000 s/mm2, complemented by one scan with b = 0 s/mm2. Cardiac gating was applied in all scans. Eddy current-
induced image warping was corrected using a correlation-based affine registration algorithm.  

Bootstrap: A set of 1000 bootstrap samples was generated using the residual bootstrap [4]. The CU with a 95% 
confidence angle (α) was derived for each voxel. 
Graph theory: The DTI data were transformed into a simple, undirected, and weighted graph. A distinct node was 
assigned for each voxel with a FA ≥ 0.2 and edges were defined to those of its 26 neighbors which lay over the 
FA threshold. For each edge, the two CUs of the corresponding nodes were linearly interpolated to create an 
edge-related CU. An additional cone around the direction of the edge (CE) with a solid angle β = 4π/26 was 
defined in which the nervous fibers passing in this direction should be contained [8]. The edge probability (pe) was 
then defined as the volume fraction of the edge-related CU intersected by the CE (see Fig.1). To enable the use 
of Dijkstra’s shortest path algorithm [10] for finding the most probable 
connection between two nodes the edge weight was set to we = 1-pe. The 
final probability of a connection between two nodes, and hence two voxels, 
was computed by multiplying all edge probabilities pe along the shortest 
path. Only paths with local curvatures smaller than 60° were accepted.  
 

Results 
Figure 2 shows the connectivity maps for a seed region of interest (ROI) in the body of the corpus callosum and 
two seed ROIs in the internal capsules. The colormap represents the probability of connection from red (high) to 

blue (low). The shortest paths to all voxels with a connectivity probability 
of more than 25% are visualized in Fig.3. The used color-coding scheme 
shows connections from left to right in red, connections from top to bottom 
in blue and through plane connections in green.  
 
Discussion and Conclusion Graph based probabilistic tractography was 
extended by including bootstrap derived data uncertainties to compute 
connectivity maps in the white matter of the human brain.  In contrast to 
previous bootstrap based algorithms [6,7], all tracking relevant 
parameters, such as the FA threshold or the curvature threshold, can be 
set after the time consuming calculation of the bootstrap samples before 
the fast and well established graph algorithms are executed. While former 
graph based algorithms [8,9] only considered the directional information of 
the DTI data to derive the edge weights, the presented algorithm takes 
also the measurement uncertainty of data into account.  
In conclusion, a new probabilistic tracking method was presented which 
combines two sophisticated DTI tractography methods: bootstrap statistics 
and graph theory. 
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Figure 1: Edge probability defined 
as volume fraction (red) of the 
edge-related CU. The nodes and 
the edge are shown in green. 
 
 

 
Figure 3: Shortest paths to voxels 
with a connection probability of 
more than 25% emanated from a 
seed ROI in the corpus callosum (a) 
and a seed ROI in the left and right 
internal capsules (b) projected onto 
FA images. 

 
Figure 2: Probability maps with a 
seed ROI in the body of the corpus 
callosum (a) and a seed ROI in the 
left and right internal capsules (b) 
overlaid onto FA images. 
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