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Introduction 
In fast MR imaging, reconstruction artifacts due to undersampled k-space can be greatly reduced by applying proper nonlinear reconstructions [1] 
based on image-sparsifying transforms. While state-of-the-art methods rely on total variation (TV), in this paper we propose to use wavelets instead, 
along with a very fast algorithm. Simulations and experimental results show our ability to reduce computational costs while maintaining SNR and 
image quality. We propose an iterative algorithm that also makes the technique computationally competitive. Our algorithm is versatile and can be 
used for any linear MR imaging problem, for instance SENSE [2]. 
Theory 
Our algorithm is based on the recent Iterative Shrinkage/Thresholding Algorithm (ISTA) [3] and Fast ISTA (FISTA) [4] that consists of repeating the 
sequence: gradient descent and wavelet domain thresholding. FISTA represents the current state-of-the-art for solving the variational problem 
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where x  is the image, m  the k-space data, E  the encoding matrix, and W  the sparsifying transform (i.e., wavelets). Our contribution is to propose 
an acceleration scheme that is optimized for the MR reconstruction problem. More precisely, instead of a single parameter that is normally used to set 
the gradient steps and wavelet thresholds, we introduce several precomputed parameters that depend on the wavelet subband. They are 
mathematically determined to maximize convergence speed and depend on the k-space sampling as well as the wavelet transform [5]. 
Methods 
Our implementation is done using Matlab™ 7.9 on a 64-bit 8-core computer, 4GB RAM, Mac OS X 10.6. For Fourier computations we use the 
NUFFT algorithm [6]. We compared the reconstruction using four methods: Tikhonov regularization using a conjugate-gradient (CG) algorithm, 
Total Variation with Iteratively Reweighted Least-Squares, and the proposed  l1  regularization with Haar wavelets using ISTA and our method. For 
each method, we optimized the free parameters to minimize the reconstruction error. We introduced random shifting in our algorithm in order to 
reduce blocking artifacts. 
The purpose of the first synthetic experiment is to estimate the computational costs. We simulated MR data for the 2D Shepp-Logan brain phantom 
and a spiral trajectory of 7 interleaves supporting a 168x168 reconstruction matrix. We added Gaussian noise with signal to noise ratio (SNR) 20dB. 
The reference image was a direct discretization of the phantom. The spiral trajectory, together with the Haar wavelet transform, favors our algorithm 
and leads to a sizeable acceleration over FISTA. This piecewise-constant phantom benefits mostly to TV regularization. 
In the second experiment, we used textured data to test the possibility to reconstruct undersampled data obtained with a single receiver coil. Cartesian 
gradient-echo with a matrix of 200x200 imaging was conducted on kiwi fruit in a 3T Achieva system (Philips Medical Systems, Best, The 
Netherlands). A field camera was used to measure the exact k-space trajectories of this scan [7]. Five sets of data corresponding to Cartesian 
trajectories designed for a 200x200 matrix were acquired, with increasing reduction factors 1, 10/9, 5/4, 10/7 and 5/3 in the phase-encoding direction. 
The reference image was obtained using conventional reconstruction from the full data, which contains 10x more samples than required by Nyquist. 
For reconstruction, we used the trajectory with undersampling R=5/4 and added full sampling of the 8% central k-space to stabilize reconstructions. 
Results 

We give in Fig. 1 the reconstructions obtained for 
the first experiment after 2s. The four algorithms 
described in Section “Methods” were employed. 
In Fig. 2 we observe the time evolution of the 
reconstruction SNR compared to the reference 
image. Note that TV performs a bit better than 
our method in terms of SNR, mainly due to the 
absence of texture in the Shepp-Logan phantom. 
Compared to ISTA, our algorithm is 6x faster in 
reaching the performance of Tikhonov 
regularization. 
We illustrate in Fig. 3 reconstructions obtained for the second experiment. We observe that the 
reconstructions are not completely artifact-free. However, we 
measured a better reconstruction SNR with our method (15.7dB) 
than with TV regularization (14.7dB) or Tikhonov regularization 
(12.5dB). In terms of computational speed, our method was 
equivalent to FISTA. Compared to ISTA it offers a 3.7x speedup 

(i.e. 4.5s vs. 17s) to reach 12.5dB and 6x speedup to reach 14.7dB (7s vs. 42s). 
Conclusions 
The proposed wavelet-based algorithm yields reconstructions that are competitive with TV regularization 
in terms of quality, in particular when data are textured. Further validations will be presented in the future 
to strengthen this claim. The algorithm parameters are optimized for the reconstruction problem, 
accelerating reconstructions up to 6 times compared to alternatives. 
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Fig. 2 Time evolution of the reconstruction SNR. 

Fig. 1 Best SNR reconstructions after 2s 
with CG (a), TV (b), ISTA (c), and our 
method (d). 

Fig. 3 Best SNR reconstructions with CG 
(a), TV (b), ISTA (c), and FISTA (d). 


