

Versatile higher-order reconstruction accelerated by a graphics processing unit (GPU)

M. A. Bieri1, C. Barmet1, B. J. Wilm1, and K. P. Pruessmann1
1Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Zurich, Switzerland

Introduction: The vast majority or MR images is currently sampled on a Cartesian k-space grid and can therefore be efficiently reconstructed by Fast Fourier
Transforms (FFT). In practice however, Fourier encoding is often complemented by other encoding mechanisms, such as static B0 off-resonance fields, motion,
concomitant fields, Eddy currents of several spatial orders. Furthermore, B1-sensitivity encoding and non-Cartesian k-space sampling are commonly combined
encoding strategies. For many of these reconstruction problems specific algorithms have been developed. When combining several of these methods, the resulting
algorithms become increasingly complex or inefficient. Alternatively an algebraic reconstruction can be used, that allows the incorporation of various encoding
mechanisms with only minor increase in complexity as compared to its ‘basic’ Fourier implementation. However, even for small images of about 100x100 pixels,
reconstruction times range on the order of minutes on current high end CPUs and scale with the fourth power of the image width for quadratic images. Modern GPU
architectures consist of several hundred programmable floating point processors, lending themselves for highly parallel problems such as algebraic MR image
reconstruction. Gain in computational speed compared to a CPU is evaluated for the intricate example of parallel imaging combined with the correction for dynamic
higher-order field effects [1] and static B0, demonstrating the versatility of the proposed reconstruction algorithm.

Methods: Algorithm: The image reconstruction is implemented by solving the linear system given by
Eq.1 for the unknown image ρ, given the signal σ and using a conjugate gradient (CG) algorithm. r is the
coordinate vector of image points, t is the time vector of the signal samples. λ, κ and ν are spatial, time
and coil indices, respectively. The encoding matrix E incorporates B1-sensitivity encoding s, static B0
encoding (ΔB0) and dynamic higher order fields (Eq.2). The dynamic higher order terms are given as an
expansion into spherical harmonics (including kx, ky and kz as well as higher-order terms [1]) of the
magnetic field (Eq.3). A set of m = 16 real-valued spherical harmonics hm(r) were used. Coefficients km(t)
were measured by a concurrent magnetic field monitoring setup [2]. Typically the number of image pixels
is similar to the number of samples acquired in time (x number of coils). E therefore scales with O(n2) in
image pixels or O(n4) in image width for a quadratic image.
Hardware: Computing was performed on an Nvidia GeForce GTX 480. The CUDA [3] environment is
used as a programming interface. A CUDA program is defined as a so-called kernel. This program is
executed parallel by a large number of identical threads, grouped in thread blocks. Each thread block runs
on one streaming multiprocessor (SM). A SM contains 32 floating point and integer processors called
CUDA cores and a (fast) shared memory which is common to all threads in a block. The graphics
processor consists of 15 SM and is attached to a (relatively slow) global memory of 1.5 GB.
Communication with the host system (and therefore any I/O) is performed via a PCI-E bus (Fig.1).
Implementation: The algorithm was implemented in C for CUDA and provides a Matlab MEX interface.
The input data is transferred from the host computer to the graphics card global memory at the beginning
and output is read back at the end of the reconstruction. The entire algorithm runs on the GPU to reduce
the transfer via the (slow) PCI-E bus to a minimum.
The computationally most complex part of the CG algorithm are the two matrix-vector computations v = EHu and u = Ev. Since E is too big to be stored in the global
memory or even in the small on-chip shared memory, the elements of E have to be computed each time they are needed. 16 GB of memory are required by the
encoding matrix of a 256x256 image, 1 coil (each element consists of two 32 bit floating point numbers, real and imaginary part). Another reason not to store E
globally is the relatively slow transfer speed of global memory. Roughly estimated, one memory transfer of a floating point number costs as much as 30 floating point
operations on the GPU (1.3 TFLOPS vs. 177 GB/s = 45·109 floating point numbers/s memory transfer).
To preserve computing time and memory bandwidth, each thread in the kernels for EHu and Ev first load
and compute some parts of the input and E and then shares with all threads of the same block via the fast
shared memory.
Test: Two different data sets are used for testing. To evaluate computation time and accuracy, MR data of
a Shepp-Logan phantom was simulated assuming Cartesian k-space sampling including typical (measured)
higher-order phase coefficients, sensitivity maps and a simulated ΔB0 map. Simulated data is needed for
accuracy testing and freely scalable input size (for speed testing). The benefit of the higher order method is
demonstrated for a diffusion-weighted single shot EPI dataset with 3-fold undersampling. 50 iterations
were performed for each reconstruction to ensure convergence.
Images were reconstructed comparing different hardware platforms: First, a MATLAB implementation of
the algorithm running on an Intel Core 2 Duo 3.0 GHz. This implementation spends about 90% of the
computation time in MATLAB built-in matrix operations and is therefore expected to be comparable to a
native CPU implementation. Second, the presented CUDA implementation using a GTX 480. Third, the
CUDA implementation is tested on a cheap (80US$, fall 2010) Nvidia GeForce 9600 GT.

Results and Discussion: Computation times are given in Fig.3. For a 512x512 image, the Core 2 Duo
takes 12 hours 51 minutes while the GTX 480 needs 73 seconds. This implies a speed-up of 633x. Speed-
up decreases with problem size, for 256x256 and 64x64 they are 581x and 216x, respectively. The cheap
9600 GT needs 182 seconds for 256x256 images, representing a speedup of 15x against the CPU.
Average and maximum errors of the CUDA implementation are on the same order of magnitude as in the
MATLAB implementation. The relative maximum error is about 10-3, the average error is about 10-6.
The absolute error against a conventional reconstruction with the linear model is shown in Fig. 4b. As a
benefit of incorporating the more complex encoding model, errors associated from higher-order fields
(Fig. 4b) can be straightforwardly corrected (Fig. 4a).

Conclusion: Using the presented implementation and GPU hardware, higher-order image reconstruction
was sped-up by orders of magnitude as compared to a comparable reconstruction on a CPU. Further
acceleration can be expected in the future with rapidly increasing graphics card performance.
References: [1] Wilm et al., MRM (in press) [2]: Barmet et al. ISMRM2010, 216. [3] Nvidia Corp. 2010,
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

Fig. 3: Computing time vs. image width for quadratic image
reconstruction with 16 higher orders, 8 coils, static B0
correction and quadratic encoding matrix.

Fig.4: In-vivo diffusion-weighted image reconstructed
using (a) the higher-order field model and the difference
image (b) when neglecting higher-order fields.

)()(κλ σρ tr HH EEE = (1)

)),(exp()(),,(λκλνλκν φ rtrsE ⋅= i (2)

∑+⋅Δ=
m

mm htktrBt)()()(),(0 rrφ (3)

Fig. 1: Equations defining the reconstruction

Fig. 2: GeForce GTX 480 and host system.

Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) 2545

