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Introduc�on:   Compared to other k-space sampling strategies, spiral trajectories stand out in many respects. They allow for the shortest echo �mes, provide the 
highest SNR efficiency, achieve a uniform point-spread func�on and pose a well-condi�oned reconstruc�on problem for parallel imaging when using circular 
coil-arrays such as typically applied for MRI of the brain. Single-shot spiral imaging is arguably the most efficient way to cover k-space, and could increase the 
achievable temporal resolu�on in dynamic MRI series and robustness against mo�on. 
Despite these advantages, spiral k-space trajectories are rarely used in clinics. The main reasons are its vulnerability to gradient �ming imperfec�ons and sta�c 
B0 off-resonance. The la�er effect scales with the acquisi�on dura�on and can therefore be addressed with parallel imaging as well as Par�al Fourier imaging.  
Par�al Fourier imaging exploits the fact that for a purely real magne�za�on in the object its k-space representa�on is complex-symmetric, meaning that ( ) =

( − ) , where ( )  depicts the signal acquired at the k-space posi�on , and * denotes complex conjuga�on. Therefore in theory the k-space can be 
asymmetrically undersampled by a factor of two without loss of informa�on, if the object phase is known. However, even for short interleaved spiral 
acquisi�ons the use of Par�al Fourier imaging has not been shown so far. 

    
Since the recent invent of magne�c field monitoring [1,2], 
precise knowledge of the actual encoding fields can be acquired simultaneously with the imaging data. The encoding fields include B0 dri�s, k-space 
trajectory as well as dynamic higher-order field informa�on. In this work the provided informa�on serves as the basis to higher-order image 
reconstruc�on [3]. In this work, Par�al Fourier imaging is extended to higher-order fields and tested in-vitro and in-vivo.   

Theory:  An SNR op�mal MR image reconstruc�on can be performed by solving the 
forward equa�on 

= ( )    ( )  
where  is the unknown vector of object pixels,  is the 
acquired signal (possibly containing data from several 
coils) and  is the noise covariance matrix [4]. The 
encoding matrix  can be wri�en as 

( , ) , = ( ) ( , )    
with , ,  counting the coil sensi�vies , grid points  and �me points  respec�vely. For 
computa�onal efficiency Eq. 1 is solved itera�vely by the conjugate gradient (CG) method. To 
incorporate par�al Fourier encoding, the algorithm is adjusted (Fig 1) to penalize non-zero 
phase a�er demodula�on with a phase es�mate  by mul�plica�on with ,where =  
[5]. The degree of penaliza�on can be adjusted by the scalar . Alterna�vely we propose to 
choose  as a mask which enables to exclude penaliza�on of pixels where the phase is 

unreliably defined such as at the image borders. 
Methods:  Image data of a spherical phantom and in-vivo brain was acquired on a 3T Achieva 
system (Philips Healthcare, The Netherlands) using a 4-element head coil array. In scans the 

field informa�on (Fig. 1) was simultaneously acquired using a 3rd order concurrent monitoring setup [2] based on 19F-NMR probes. In the phantom a single-shot 
variable density spiral (Fig 1b) gradient echo sequence (TE=3 ms, readout dur.=25 ms, kmax=1100 rad/m, FOV=23cm, R=3) was acquired. In-vivo two spiral spin-
echo EPI scans were acquired (Fig.1 a) (TE=50ms, readout dur. =18.5ms, kmax=1050rad/m, FOV=23cm) SENSE reduc�on factor of R≈1 and R=6 (single-shot). For 
both, the in-vivo and the phantom experiments the same slice was addi�onally acquired with two Cartesian gradient echo scans (TE=3.0 ms/3.6 ms, FOV=230, 
matrix=1.8 mm2).  
In a first step the Cartesian gradient echo images were reconstructed without Par�al Fourier. From these data the B1-coil-sensi�vity maps as well as a B0-map 
were calculated. For the phantom scan a low-resolu�on phase map was extracted from the densely sampled k-space. The in-vivo phase map was obtained from 
the fully sampled spin-echo scan. Finally the B0, B1

- and phase maps served as an input for the PF reconstruc�on. The amount of penaliza�on  was heuris�cally 
set to 0.6 in the central part of the object, and 0 outside. For comparison the objects were also reconstructed with SENSE, but without Par�al Fourier encoding. 
Results: For the non-PF reconstructed images (Figs.3a,4b) residual fold-over ar�facts are visible along with disturbance in the corresponding phase images (Figs. 
3b,4e),   while phantom (Fig 3) and in-vivo (Fig 4) geometry is reflected faithfully when incorpora�ng Par�al Fourier encoding (Fig3c, 4c). 
Discussion and Conclusion:  The first applica�on of par�al Fourier encoding to spiral imaging was shown. Using only 4 receive channels a 6-fold undersampled 
single-shot in-vivo images without aliasing ar�facts was reconstructed. Auto-calibrated PF was demonstrated with single-shot variable density spirals. The high 
image quality and resolu�on is a�ributed to the shortened readout dura�on and the accurate descrip�on of the encoding process which was incorporated into 
the higher-order image reconstruc�on. References: [1] Barmet, MRM 60:187–197. [2] Barmet et al. ISMRM2010,216. [3] Wilm et al., MRM (in press). 
[4] Pruessmann et al., MRM46:638. [5] Bydder et al. MRM 53:1393.    

Fig4 Magnitude (a) and phase (b) images of an interleaved 
spiral R=1.Single-shot (R=6) spiral magnitude (b,d) and phase 

(e,f) images with (c,f) and without (b,e) PF. 
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