Dynamic imaging produces different 3D knee kinematic information than static imaging
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INTRODUCTION Osteoarthritis is generally believed to be initiated by, and its progression facilitated by, abnormal joint mechanics (Wilson 2008). In
many in vivo studies, knee kinematics have been assessed using images acquired at a series of static positions over the range of motion (ROM). The
limitation of these methods is that there may be differences between the kinematics estimated from sequential static poses of the joint and the
kinematics of the joint moving at physiological rates.

The purpose of this study was to compare kinematic results from a validated 3D static MR kinematics technique (Fellows 2005) to a novel 3D

dynamic MR kinematics technique (d’Entremont ISMRM 2010) to determine whether imaging during continuous movement produces different kinematic
information than imaging a joint at sequential static positions.
METHODS Ten normal subjects (mean age 31, 8 male, 7 right knees) were imaged on a 3T Philips Achieva scanner using a novel stretchable
8-channel knee coil array which permits knee flexion while maximizing the SNR independently of the knee size and shape (Nordmeyer-Massner ISMRM
2008). A MR-compatible loading rig was created to allow free leg motion with a force of 15% body weight applied in the ankle-hip direction. A fast
imaging protocol based on an ultrafast gradient echo sequence with water suppression was developed and used to image the knee in motion.

One high-resolution scan was taken (multi-slice T1-weighted FSE, 8:52 min), which provided detailed subject-specific bone models. Then
three types of low-resolution loaded scans were taken: static standard (16 slices, 2D TSE, 23 seconds), static fast (8 slices, ultrafast gradient echo, 1.9
seconds) and dynamic (30 sets, 8 slices each, ultrafast gradient echo, 56 seconds) (Fig. 1). The two static scans were performed together at each of six
flexion angles. During the dynamic scan, performed after the static scans, the subject was asked to move very slowly, but no specific rate of motion was
required. Angles for the static scans were chosen to cover the same flexion range as the dynamic scan.
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