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Introduction 
Spatially resolved assessment of blood pressure dynamics is desirable for the evaluation of various cardiovascular disorders. For example, the local change of 
pressure across vascular or valvular stenoses can be used to characterize the severity of the constriction. For the heart chambers, systolic and diastolic efficiency is 
directly related to the dynamics of the respective filling pressures. Time-resolved velocity data acquired by velocity encoded phase-contrast MRI can be used to 
derive relative pressure [1,2]. Based on the Navier-Stokes equation relating a 3D velocity vector field to the pressure gradient vector field for an incompressible 
fluid, taking the pressure divergence and neglecting body forces, a pressure Poisson equation can be formulated [3]. Solving this Poisson equation allows to 
calculate the relative pressure field, avoiding the noise amplification and path dependence of directly integrating pressure gradients fields. However, the 
implementation of a solver for the pressure Poisson equation for arbitrarily shaped domains is not straight-forward and boundary conditions have to be chosen 
carefully. Recently, a multi-grid solver has been proposed for improved and accelerated relative pressure field computation [4]. 
In this paper, we present an alternate solver for the pressure Poisson equation using a direct generalized minimal residual procedure (GMRES) [5]. 
 
Methods 
Pressure Poisson equation solver: Assuming laminar flow conditions and an incompressible Newtonian fluid with density ρ and viscosity μ the simplified Poisson 
equation relates the pressure p to the velocity field V according to:       [ ]1)( 22 VVV
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Equation 1 is discretized using central differences for the divergence calculations. The Laplacian is calculated using a component-wise symmetric 3-point 
discretization on inner voxels and a linear extrapolation on boundary voxels. The resulting system of linear equations is solved using an iterative Krylov subspace 
approach where in each iteration the residual norm is minimized. This so-called GMRES procedure includes an Arnoldi iteration and for each iteration step an 
inner least squares problem is solved. A maximum of 50 inner and 10 outer iteration steps were performed until the residual converged below a predefined 
tolerance. Boundaries were assumed to be static and impermeable by enforcing that the flow into the boundary always remained zero. Consistently, Neumann 
boundary conditions were chosen for solving Eq. 1 [6]. The boundary conditions were directly incorporated into the differential operators such that they remain 
implicitly fulfilled when solving Eq. 1. To keep the Laplacian operator on the left hand side of Eq 1 linear, the corresponding fixed additive boundary terms 
entering the operator were subtracted from the right hand side of Eq. 1 for boundary points. The solver was implemented entirely in C++ using double precision 
floating-point arithmetic. 
4D flow imaging: Velocity vector field measurements in the aortic arch of healthy volunteers (N=3) and patients (N=2) were performed using time-resolved 3D 
phase-contrast imaging with a prospectively ECG-triggered, T1-weighted, segmented gradient echo sequence. Nominal spatial resolution was 1.4x1.4x3mm3, TR 
and TE were 4.5 ms and 2.7 ms, and the flip angle was 6°. Velocity encoding in all directions was 150 cm/s (300 cm/s in patients). Twenty-five cardiac phases 
were acquired uniformly distributed over the cardiac cycle. Images were reconstructed to a 128x128x17 image matrix. Navigator-based respiratory gating was used 
and the total acquisition time was approximately 16 minutes depending on gating efficiency and heart rate. Correction of the data for the effects of concomitant 
gradient fields was performed on the scanner. A linear phase correction for eddy current effects was achieved by subtracting a least-squares fit to the phase 
distribution in stationary tissue. 
Volume segmentation: The volume of interest used as the computational domain was segmented by thresholding a velocity amplitude dataset in late systole 
weighted with the signal magnitude.  Relative pressure fields in all cardiac phases were computed from the same volume, neglecting motion of the aorta over the 
cardiac cycle. 
 
Results 
For all cardiac phases, the solver converged to a solution for all datasets. Calculation times were typically below 4s per cardiac phase on a 2.5 GHz Core Duo Intel 
CPU. The resulting maps showed a smooth pressure distribution across the aortic arch. In the healthy volunteers pressure distributions in the ascending aorta were 
larger compared to those seen in the descending aorta in early systolic phases and vice-versa in late systolic phases.  
 

 
 
Fig 1a: Systolic flow velocity field in 
the aortic arch of a healthy volunteer.  
 

 
Fig 1b: Corresponding relative 
pressure map (color-coded in 
arbitrary units).   

 
Fig 2a:  Systolic flow velocity field in a 
patient with an aortic stenosis and dilated 
ascending aorta. 

 
Fig 2b:  Corresponding relative pressure map 
(color-coded in arbitrary units). 
 

                                       

Discussion: 
The proposed solver provides estimates of the relative pressure fields directly from segmented velocity field data acquired by velocity-encoded phase-contrast 
MRI. However, the automatic segmentation of the aorta proved difficult especially in the patient data. Segmentation errors significantly influenced the resulting 
relative pressure maps. Another potential problem is the excessive memory usage of the GMRES algorithm in very large computational domains. This can be 
addressed by an extension of the GMRES algorithm, whereby the method is restarted after a limited number of iterations. A restarted GMRES algorithm may be 
required for datasets with higher spatial resolution and matrix sizes. Also, appropriate preconditioning of the system may further optimize algorithm convergence 
and remains to be investigated.  
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