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Introduction MRI of short-T2 samples is frequently performed with a 3D centre-out radial acquisition scheme and ultra-
short echo time (UTE) [1]. To further improve the efficiency of the radial approach, the read gradient can be switched on 
before hard-pulse excitation, resulting in imaging with zero echo time (ZTE) and a faster readout [2, 3] (Fig. 1). ZTE data is 
slightly incomplete in the k-space centre due to an initial dead time Δ composed by the durations of RF pulse, send-receive 
switching, and digital filter build-up. The k-space gap can be addressed by radial acquisition oversampling and algebraic 
reconstruction, involving finite support extrapolation [4, 5]. However, such generalised signal processing entails deviations 
in noise behaviour and could lead to unusual confounds due to regional noise amplification and noise correlation in the 
image domain. The goal of this work was to elucidate these effects by analysing noise propagation in ZTE reconstruction. 
 

Methods The algebraic part of ZTE reconstruction provides 1D radial projection data, which are then joined by 
regridding to form a 3D image. In the algebraic approach [5, 6] an encoding matrix E is used to reflect signal encoding 
by gradient-driven phase modulations. Oversampling and the central gap are directly reflected by corresponding rows, 
or lack thereof, in the matrix E. Reconstruction is then achieved by the pseudoinverse E+. In this process, thermal noise 
in the input data of covariance Ψ propagates such as to yield image noise of covariance X = E+ΨE+H. The diagonal of X 
lists the individual noise variances of the reconstructed pixels, while its off-diagonals reflect noise correlation. The 
latter are easier to interpret after normalisation according to X’(i,j) = X(i,j)/(√X(i,i)√X(j,j)), such that the resulting 
matrix X’ lists correlation coefficients. When viewed in k-space, the same noise is of covariance Y = DFT X DFTH and 
the corresponding correlation Y’. Subsequent noise propagation into the final 3D image is governed by averaging 
according to the sampling density of the radial scheme, resulting in noise weighting in k-space proportional to k2. 
 

Results 1D simulations of ZTE imaging were carried out with matrix 128, oversampling 4, and Δ = 3 dwells. A 
sample at k = 0 as sometimes obtained by a measurement without gradient [7] was optionally included. Fig. 2 shows the 
purely real noise covariance and correlation matrices, normalised with respect to full sampling and DFT reconstruction. 
For better visibility, the k-space displays are zoomed by a factor of 4. The k-covariance Y peaks strongly in the centre 
reflecting noise amplification by finite-support extrapolation into the unsampled gap. Noise in this region is also 
strongly correlated because it derives from original data in the close neighbourhood. As a consequence, in the image 
domain this noise is also very strong, highly correlated, and spatially non-uniform. Including k = 0 considerably reduces 
the covariance and changes the correlation patterns (Fig. 2, second row). These calculated noise statistics are confirmed 
by several reconstructions of actual noise instances without and together with simulated MR signal from a 1D box (Fig. 
2, right). In particular, unlike the usual grainy appearance of thermal noise, the simulations are dominated by low-
frequency, shaped noise components, which reflect the predicted strong correlation. Their random nature is evident only 
from the fluctuation from scan to scan. As shown in Fig. 3, the observed special noise behaviour depends strongly on 
the dead time Δ. To confirm the theoretical findings, 3D ZTE (BW 100 kHz, matrix 128, TR 1 ms) was performed on a 
7 T Bruker MRI system. The intermediate 1D noise image in Fig. 4a indeed shows the predicted behaviour. However, 
importantly, in the corresponding 3D reconstruction the noise is of uniform magnitude and no visible correlation. This 
is due to inherent averaging across the large number of 1D profiles involved, which compensates for the described noise 
increase in the k-space centre and thus eliminates highly correlated, low-frequency noise in the image domain. Only at 
Δ = 4.3 (Fig. 4b), further inflated noise in 1D profiles becomes strong enough to cause visible perturbations also in the 
final 3D data. Consistently, the ZTE image of a walnut acquired with Δ = 2.9 (Fig. 4c) is free of artefacts although the 
underlying 1D projections are corrupted by strong correlated noise as evident from comparison with Δ = 0.7. 
 

Conclusions Noise analysis of ZTE imaging has revealed peculiar and specific mechanisms of noise amplification 
and correlation, leading to a manifestation of noise that bears the risk of being mistaken for object structure or artefact. 
However, it has also been found that the strong noise averaging in the k-space centre inherent to 3D radial scanning 
compensates for this effect. Therefore, remarkably large acquisition gaps of multiple dwells are feasible, thus enabling 
high bandwidths, which in turn are the key prerequisite for achieving high spatial resolution in short-T2 samples. 
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↑ Figure 1 ZTE acquisition scheme. 

43210
0.0

0.2

0.4

0.6

0.8

100

102

104

106

108

Δ [dw]

max
mean

without k=0

with k=0

without k=0

with k=0

43210
Δ [dw]

diag(|X|) mean(non-diag(|X‘|))

Figure 2 Left: 1D noise statistics in k-space and image domain. Right: Correlated noise in simulated image data (real part). 

Figure 3 Noise covariance and correlation 
as functions of dead time Δ [dwells]. 

Figure 4 Actual ZTE measurements with 
different Δ: noise (a, b), walnut (c). 
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