
Figure 1: Cardiac STEAM DTI sequence 
with CAIPIRINHA blips (red) during single-
shot readout. 

 

Figure 2: Four chamber view with the 
slice locations used for multi-slice DTI.  

Figure 4: Image distortion due to field 
inhomogeneity (a) and corresponding 
B0 map (b).
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Introduction  
The feasibility of diffusion tensor imaging (DTI) of the in-vivo human heart has been shown in previous works 
[1,2,3]. The Stimulated Echo Acquisition Mode (STEAM) provides robust diffusion weighted imaging of the 
heart [4,5] but requires diffusion encoding and decoding over two consecutive heartbeats. In addition, the SNR 
penalty of STEAM relative to spin-echo acquisitions makes additional signal averages necessary. Consequently, 
the image acquisition process is inherently slow. This becomes a particular challenge if multiple slices are 
acquired to reconstruct the 3D tensors of the whole heart [6]. In the present work, concurrent dual-slice single-
shot EPI cardiac diffusion weighted imaging is proposed using multi-band STEAM and controlled aliasing in 
parallel imaging [7]. Magnitude images and 2D diffusion tensors for two short-axis slices are presented and 
compared to sequential single-slice acquisitions. 
Methods 
The STEAM sequence spans over two consecutive heartbeats, with the first and third excitation pulse triggered 
on the R-waves of the ECG (Figure 1). In the current work, unipolar diffusion encoding gradients were played 
out in ten directions [9] with a b-value of 500s/mm2. The 90° RF pulses were replaced by dual band pulses for 
dual slice excitation. For RF-waveform generation the Shinnar-Le Roux algorithm [10] was used, producing two 
passbands corresponding to two slices with a slice thickness of 4mm and a stopband corresponding to a slice 
gap of 36mm. For a better conditioning of the separation of both slices during reconstruction a half Field Of 
View (FOV) shift was introduced for one of the two slices. To this end a phase difference of π between both 
slices was added for every second k-space line using gradient blips in slice selection direction [8] (Figure 1). To 
reduce the echo time and to shorten the readout duration, additional in-plane undersampling by a factor of 1.5 
[11] was applied. Hence two sources of aliasing are present and up to four voxels originating from two slices 
can be folded onto each other forming aliased image	ܫ௫ for coil x according to:     
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where C denotes coil sensitivity and M the desired unaliased image voxels. The g-factor is given as (2). In order 
to determine coil sensitivity matrix C a separate reference scan was acquired. All measurements were 
performed on a 1.5T Philips Achieva system (Philips Healthcare, Best, The Netherlands) equipped with a 32 
channel cardiac receiver array. Fat suppression was achieved by frequency selective saturation prior to the first 
90° excitation. For each diffusion encoding direction ten averages were acquired within one breath hold. To 
ensure consistency of breath hold levels respiratory navigator gating was used with a 1D navigator placed on 
the right hemi diaphragm (gating window: 5mm). The imaging parameters were as follows: resolution 3×3mm2, 
slice thickness 4mm, FOV: 360×288mm2, TE 24ms, TR: 2-R-R-intervalls, partial Fourier sampling (65 %). 
Results 
Figure 3 shows the b=0s/mm2	images of one mid-ventricular slice and one apical slice separated by 36mm 
according to Figure 2. Images presented in Figure 3 (a) and (c) were acquired with a standard single-slice DTI 
STEAM sequence within a total of 22 breathholds. Slices in Figure 3 (b) and (d) were acquired simultaneously 
using a total of 11 breathholds. Diffusion tensors upon image registration are shown in (e), (g) and (f), (h) for 
sequential single slice and concurrent dual slice acquisitions. 
Discussion  
In this work a single-shot dual slice diffusion encoding sequence has been presented increasing scan efficiency 
of multi-slice cardiac STEAM DTI by a factor of two. Compared to sequential single-slice acquisitions, B0 
homogeneity needs to be guaranteed over a larger volume potentially resulting in residual off-resonance 
artifacts as demonstrated in Figure 4. In order to address the issue, higher order shimming needs to be 
performed or off-resonance information to be incorporated into image reconstruction. 
References 
[1] Tseng et al. MRM 1999 ; [2] Edelman MRM 1994; [3] Dou et al. 
MRM 2003;  [4] Stoeck et al. ISMRM 2011; [5] Nielles-Vallespin et al. 
MRM 2012 ; [6] Toussaint et al. MICCAI 2010; [7] Breuer et al. MRM 
2005; [8] Setsompop et al. MRM 2012; [9] Jones et al. MRM 1999; 
[10] Pauly et al. IEEE TMI 1991; [11] Pruessmann et al. MRM 1999; 
Acknowledgements 
This work is supported by UK EPSRC. 
 

 

Figure 3: Comparison of b=0s/mm2 images for 
sequential single slice (a), (c) and concurrent 
dual-slice DTI (b), (d). Corresponding tensors 
are given in (e), (g) and (f), (h) for single and 
dual-slice acquisitions, respectively. 
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