Efficient non-Cartesian SPIRIT without explicit consecutive regridding and gridding
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Introduction: SPIRIT [1] is an autocalibrating parallel imaging (PI) method for arbitrary k-space trajectories generalizing GRAPPA [2]. Recently, the
computational complexity of the calibration operator has been reduced from O(NCZ) to O(Ng) (Ng: Number of coils) by extracting coil sensitivity
maps via eigen decomposition of the interpolation kernel [3,4]. In [3] only the forward operation of the modified kernel has been used in a
projection over convex sets (POCS) algorithm for Cartesian sampling. However, conjugate gradient (CG) type solvers for non-Cartesian sampling
also include adjoint besides forward operations. In this work, we reduce the computational complexity for non-Cartesian SPIRIT by incorporating
the coil sensitivity-based kernel into CG-like reconstruction. Additionally, the two consecutive k-space interpolation steps during the regridding-
gridding operation are approximated by a diagonal matrix multiplication potentially reducing computational costs further.

Theory: In SPIRIT, the GRAPPA-like k-space interpolation kernel can
efficiently be implemented in image domain yielding a matrix-vector

-

multiplication, pn(X) = G(X) pn.1(X), for each pixel at iteration step n. p,(x) Low-rank
denotes the (Nox1) column vector stacking each coil’s image value at pixel matrix
position X and G(x) is a (N:XN.) matrix containing the values of the Fourier completion

transformed k-space kernel at X. The corresponding image domain operator
acting on all coil images stacked in vector [2) is then denoted as G. It has
been shown in [3] that the pixel-wise O(N;") matrix multiplication can be
reduced to a successive O(N;) vector-vector and scalar-vector
multiplication: G(x) = [le(X)|[%e(x)c(x)™, where c¢(x) is the coil sensitivity
vector corresponding to the eigenvector of G(X) with eigenvalue 1. Defining

the modified operator as C(x) = |lc(x)|[?c(x)c(x)" and C, respectively, we Ones-k-

see that C(x)™ = C(x) and C" = C. With the identity |, the calibration space r

consistency and its adjoint operation appearing as (G - )" (G - 1) in CG-like regridding- — K — CcC-—

reconstruction can then be simplified to (C - )™ (C- 1) =-(C - 1). gridding

Following [5] we replace the regridding-gridding operation EME with the
encoding matrix E of the data consistency term with IszFHdiag(FoQ)FIzp p i /Coil

[6], with the zero-padding matrix |, doubling the image matrix size, the Figure 1 Reconstruction workflow. K is obtained via the geometry of the
unitary discrete Fourier transform (DFT) F, the unnormalized DFT Fg, and Q  undersampled trajectory. The calibration operator G and C are calculated
as defined in [5]. Instead of calculating Q according to [5], we approximate from the center of k-space via low-rank matrix completion and eigen
" R : L. . K decomposition, respectively.
diag(F¢Q) by another diagonal matrix K. Similar to [7], K is obtained by
regridding a constant ones k-space onto the non-Cartesian trajectory followed by gridding back onto the Cartesian grid. Combining the two above
approaches, the normal ecquation to solve the SPIRIiT image domain minimization problem for p, argmin, [[EFE +2%G - HM(G - D]p - EMdI?
with CG reduces then to: argmin, ||[IszFHK Fly - A2(C - ]p - ENd|P, with the arbitrary k-space trajectory d.
Methods: An artificial 16-channel coil array data set [8] was used to generate a reference multi-coil computer model data set. Complex valued
white Gaussian noise with independent real and imaginary part was added. 8 virtual channels were then computed using coil array compression
[8]. The reference data (256x256 matrix) was projected onto undersampled
spiral and radial k-space trajectories. For both sampling schemes, a fully
sampled k-space center (30x30) for calibrating G with a (7x7)-kernel was
calculated via low-rank matrix completion [9]. C was obtained by eigen
decomposition of G and K via regridding and gridding of a (256x256)-ones-
k-space (Fig.1). CG with 40 iteration steps was then used for
reconstruction, once with G and E for standard SPIRiT, once with both new
operators C and K, and once with C and E. To implement E, the NUFFT
gridder [10] was used.
Results: Fig. 2 shows reference, direct non-uniform Fourier transformed,
SPIRIT reconstructed and error images for the simulated spiral and radial
data. The masked error images depict the equality of using operator G or C
and E or K. Compared to standard spiral SPIRIT with G and E the saving in
reconstruction time when using C and K was 43% and 40% with C and
NUFFT gridder E. For the radials, the corresponding time savings were 35%
and 49% revealing that the benefit of K depends on the number of
acquired k-space samples.
Discussion: A modified coil-sensitivity based calibration operator was
incorporated into non-Cartesian CG-like SPIRIT. While maintaining image
quality, significant reduction in reconstruction time has been demonstrated
for simulated spiral and radial data. In addition, the exchangeability of the
two consecutive k-space interpolation steps with a diagonal matrix
multiplication has been shown. Depending on the number of k-space
samples, reconstruction times on the order of the highly optimized NUFFT
gridder are achieved.
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