Single Shot Multi-Dimensional Imaging using Magnetic Field Monitoring and including Maxwell Terms

Frederik Testud¹, Daniel Gallichan², Kelvin J. Layton³, Anna M. Welz¹, Christoph Barmet⁴, Chris A. Cocosco¹, Jürgen Hennig¹, Klaas P. Pruessmann⁴, and Maxim

Zaitsev¹

¹Medical Physics, University Medical Center Freiburg, Freiburg, Germany, ²Centre d'Imagerie BioMédicale, Ecole Polytéchnique Fédérale de Lausanne, Lausanne, Switzerland, ³Electrical & Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia, ⁴Institute for Biomedical Engineering, University and ETH Zürich, Zürich, Switzerland

Introduction: Non-linear non-bijective PatLoc (parallel $\vec{k}(t) = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T [\vec{\phi}(t) - \vec{\omega}_{ref}t - \vec{\phi}_0]$ (Eq. 1) acquisition technique using localized gradients) encoding has $B_c = \|\vec{B}(\vec{r})\| - B_z$ (Eq. 2) been proposed [1] to potentially minimize peripheral nerve stimulations by using e.g. two hyperbolic or one elliptic $B_c = \frac{1}{2B_0} \left[\left(\left(4\alpha^2 G_c^2 - 8G_c^2 \alpha - 8\alpha G_c G_a + 8G_c G_a$ summations by using c.g. two hyperbolic of one emptobe $a_{c}^{2} = \frac{2B_{0}}{2B_{0}} \left[((4a G_{c}^{2} - 8G_{c}a - 8G_{c}G_{a} + 8G_{c}G_{c} + 8G_{c}G_{a} + 8G_{c}G_{c} + 8G_{c}G_{c}$ (FOV). The image reconstruction is sensitive to field drifts, eddy + $((4\alpha^2 G_z G_c - 8G_z G_c \alpha + 4G_z G_c + 4G_z G_a - 4G_z G_a$ currents, hardware delays and concomitant fields leading to $+4G_z\alpha G_a + 4gG_b)y^2 +$ blurring, geometric distortions and ghosting. Magnetic $\check{\text{Field}} + (2G_yg - 2Gz\alpha G_x)x + (4\alpha^2G_zG_c + 4gG_b - 4G_z\alpha G_a)x^2 + (4\alpha^2G_zG_c + 4G_z\alpha G$ Monitoring (MFM) [4,5] addresses these issues by estimating the $+((-4G_zGb-4gG_c)x-2G_zG_y+2gG_x+2G_zG_y\alpha)y)z+$ trajectory from field probes' signal phase. In this work, the $+(Gz^2 - 2z^2\alpha + G_z^2\alpha^2 + g^2)y^2 - (Gz^2 - 2z^2\alpha + G_z^2\alpha^2 + g^2)y^2$ analytical form of Maxwell terms for three linear $(XG_x, YG_y, 2xgyG_z + (G_z^2\alpha^2 + g^2)x^2)$

(Eq. 3)

(b)

basis θ_0	basis θ_1
1	1
Х	Х
Y	Y
Z	Z
XY	XY
ZY	ZY
3Z ² -(X ² +Y ² +Z ²)	X ² +Y ²
XZ	$Z(X^2-Y^2)$
X ² -Y ²	X ² -Y ²
Y(3X-Y ³)	ZX ²
XYZ	XYZ
$Y(5Z^2-(X^2+Y^2+Z^2))$	Y ² Z ²
$+ Z(5Z^2-3(X^2+Y^2+Z^2))$	X²Z²
$X(5Z^2-(X^2+Y^2+Z^2))$	ZY ²
$X(X^2-3Y^2)$	Z²X

(c)

Tab. 1: Basis functions used for trajectory estimation. (**d**)

 ZG_z), two hyperbolic (XYG_a and (X²-Y²)G_b) and one elliptic (a) (Z^2G_c) paraboloid magnetic fields is presented with G_x, \ldots, G_c their respective amplitudes. Their spatial dependencies are used to build a different set of basis functions (θ_1) from the real spherical harmonics (θ_0). A field camera is used for trajectory calibration. Phantom and in-vivo NW-EPI and 4D-RIO measurements were performed and reconstructed with the nominal and measured trajectories using the basis θ_0 and θ_1 .

Theory: The measured field probes' phases $\vec{\phi}(t)$ (Eq. 1) reflect (e) the magnetic field evolution at their positions (x, y, z) with respect to the applied linear gradients. The initial value of the phases $\vec{\phi}_0$ and the linear drift $\vec{\omega}_{ref}(t)$ has to be subtracted. The trajectory $\vec{k}(t)$ is estimated from the unwrapped phases in the least square sense according to the basis functions (Tab. 1) set in the probing matrix **P** using the field probes' position. The Maxwell terms of the hyperbolic paraboloid fields are estimated as in [7] (i) for three linear, two paraboloid and one elliptic gradient (Eq. 2-3). g and α are constants obtained in the derivation of B_c. The spatial dependencies of B_c (Eq. 3) are used to build the basis θ_0 (Tab. 1). Methods: Measurements were performed on a 3T Tim TRIO MR scanner (Siemens Healthcare, Erlangen, Germany). The PatLoc fields are produced by a head gradient coil insert [6] producing two parabolic hyperboloids magnetic fields of the type XY and Fig. 1: 1st column shows reference images using linear gradients. (a) and (e) are gradient

 X^2 - Y^2 rotated around the z-axis by $\pi/8$. The corresponding echo images from the acquired field maps and (i) is an echo planar image from the same X = 1 for a constructed around the 2-axis by 1/3. The corresponding $G_c=0$ and take the above slice. 2^{nd} , 3^{rd} and 4^{th} column are reconstructed images using the nominal trajectory, using rotation into account (Eq. 3). The field camera consists of 16 shows 4D-RIO phantom and in-vivo images, the 3^{rd} line NW echo planar images. unshielded H¹ field probes [5] approximately distributed on a

spheroids' surface ($\emptyset x \approx \emptyset y \approx 18$ cm and $\emptyset z \approx 14$ cm) placed inside the head coil and connected to the spectrometer of the scanner. The separate transmit chain [3] is controlled via trigger signals from the scanner. NW-EPI (FOV: 220×220×3 mm³, 128×128 px²) and 4D-RIO (FOV: 256×256×3 mm³, 128×128 px²) images were acquired. Image reconstruction using conjugate gradient with the full encoding matrix computed on demand on Graphics processor units [8] and data analysis are performed offline in MATLAB (The Mathworks, Natick, AM, USA).

Results & Discussion: Reconstructed phantom and in-vivo images using the nominal trajectory, the measured trajectory fitted to basis θ_0 and θ_1 are shown in Fig. 1. Last column in Fig. 1 depicts fewer artefacts and signal voids as in the images reconstructed using the nominal or estimated trajectory from basis θ_0 (Tab. 1), which do not take Maxwell terms' spatial dependencies (Eq. 3) into account. However, small artefacts such as ringing and geometric distortions are still present in Fig. 1 (d), (h) and (l), possibly due to the assumption of perfectly quadratic source fields A and B for the derivation of the Maxwell terms.

Conclusion: Successful single shot multidimensional imaging with 4D-RIO or NW-EPI is possible with trajectory calibration using MFM. Image quality improvements are obtained when taken the Maxwell terms' spatial dependencies into account.

References: [1] J. Hennig et al. 2008 MAGMA 21; [2] D. Gallichan et al. 2012 Proc. ISMRM 292; [3] K. Layton et al. 2012 MRM early view; [4] C Barmet et al. MRM 2008 60; [5] B. Wilm et al. 2011 MRM 65; [6] A. Welz et al. 2009 Proc. ISMRM 3073; [7] M. Bernstein et al. 1998 MRM 39; [8] C. Cocosco et al., GTC 2012, S#0348:

Acknowledgments: This work has been supported by the INUMAC project supported by the German Federal Ministry of Education and Research, grants #01EQ0605 & #13N9208.