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 Figure 2: Flow chart for projections in a nonlinear kernel feature space using kernel PCA. 
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Figure 3: Image reconstruction results for 2D (upper row) and 3D (lower row) cardiac 
images comparing L1 minimization in wavelet and finite differences transform domains 
with the proposed projections in a nonlinear kernel feature space. Root mean squared 
errors are indicated in the insets. 
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Introduction: In compressed sensing (CS), incoherent undersampling artifacts are removed by nonlinear 
denoising in sparse transform domains while ensuring consistency with the acquired k-space data. CS 
image reconstruction algorithms typically employ wavelet and finite differences transforms which both 
fulfill the restricted isometry property (RIP) [1], i.e. they are (nearly) orthogonal transforms. However, 
both transforms require a considerable amount of linear coefficients to model long-range correlations in 
images (Fig. 1), i.e. the sparsity is reduced. Recently, generalizations of RIP and CS reconstruction from 
nonlinear observations have been described [2]. 
In the present work, MR image reconstruction exploiting nonlinear transform domains is proposed. 
Nonlinear basis functions are employed for efficient representation of long-range correlations. An 
implicit nonlinear mapping of image blocks into a high-dimensional kernel feature space is derived from 
the neighborhood of the blocks using kernel principal component analysis (kernel PCA) [3]. Nonlinear 
denoising is achieved by projection onto the first principal components. Image reconstruction is 
performed using an iterative thresholding scheme [4] interleaving nonlinear projection and gradient 
updates for consistency with the acquired k-space data. 
Theory: Kernel PCA comprises of three steps including a nonlinear mapping 
into a feature space (1), a linear PCA for separation of image data from 
artifacts (2), and a numerical back-mapping to input space (3). The nonlinear 
mapping is performed implicitly by means of Mercer’s theorem, which 
states that positive-definite, symmetric kernel functions :k × →X X  ℝ can 

be written as scalar product: , ) ( ( )( )Tk =Φ Φx y x y . Using a Gaussian kernel 

function 2 2
2

( , ) exp( 0.5 / )k σ= − −x y x y , the feature space has infinitely 

many dimensions with data-dependent nonlinear basis functions. The linear 
PCA of step (2) is performed in a dot product space yielding the N most 
significant principal components where N is the number of training samples 
{ , ,...}x y  where each sample vector represents a stacked image block (Fig. 
2). Back-mapping is performed with a fixed-point iteration scheme [5]. The 
kernel width σ  controls the degree of nonlinearity [6]. For very small σ , a 
single basis function represents all image data including image artifacts. 
Thereby, sparsity in kernel feature spaces is only meaningful if the true 
image signal is separable from undersampling artifacts. MR image 
reconstruction was performed using projected Landweber updates. With 
encoding matrix E, k-space data d, image estimate xn and kernel PCA 
projection P , the iteration steps are given by 1 ( ( ))H

n n n+ = − −E Exx x dP . 
Methods: Fully sampled 2D and 3D cardiac images were acquired on a 1.5 T 
and 3T system (Philips Healthcare, The Netherlands) in subjects after 
written consent was obtained according to institutional guidelines. The data 
were undersampled in phase-encode directions using reduction factors of 4 
(2D) and 8 (3D) using a variable density sampling [7]. Scan parameters for 
the 2D scan included a field-of-view of 270x270 mm2 and isotropic in-plane 
voxel size of 1.4 mm. Coil array compression from 28 coils into 4 virtual coils 
was used [8]. The 3D whole-heart scan was acquired with a 5-channel 
cardiac coil with a field-of-view of 256x256x144 mm3 and isotropic voxel size 
of 1.33 mm. 
Results: Image reconstruction results comparing CS L1 minimization in 
wavelet and finite-differences transform domains and the proposed 
projections in a nonlinear kernel feature space are presented in Figure 3. 
The 3D whole-heart scan was reformatted to show the right coronary 
artery. The sampling patterns are shown to the right of the in vivo images. 
Discussion: MR image reconstruction exploiting nonlinear transforms has 
successfully been implemented using projections onto principal components 
in a high-dimensional kernel feature space, employing kernel PCA. Image 
quality was found to improve considerably relative to standard CS 
reconstruction with wavelet and finite-differences transforms. Further work 
is warranted to explore the limits of nonlinear transform domain 
reconstruction.  
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Figure 1: Middle graphs: Plots of the profiles indicated by
circles and crosses against the solid line. Right image: 3-
level wavelet transform of the left image. The graphs and
the image in wavelet domain demonstrate the decreased
sparsity when representing long-range correlations. 
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