Requirements for Optimal B₀ Shimming for a Spectroscopy Voxel in the Frontal Cortex at Ultra-High Fields

Ariane Fillmer¹ and Anke Henning^{1,2}

¹Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland, ²Max Planck Institute for Biological Cybernetics, Tuebingen, Germany

INTRODUCTION

Magnetic Resonance Spectroscopy (MRS) is a powerful tool with a wide range of applications in diagnostics and research and the transition to ultra-high fields promises major advantages with respect to SNR and spectral resolution. For reliable results, however, a very homogeneous B_0 field is required, but the B_0 inhomogeneity induced by the subject itself increases in amplitude with increasing field strengths. Excellent B₀ shimming is therefore of outermost importance to yield improvements of the effective spectral resolution at ultra-high fields. To this end conventional MRI scanners are equipped with a set of shim coils, which produce spherical harmonic shaped fields of up to 3^{rd} -order, and a variety of algorithms is used to determine optimal B₀ shim parameters¹⁻⁴. Naturally, the produced amplitudes of the shim fields are limited by the specifications of the used hardware. However, an optimal B₀ inhomogeneity compensation might not be possible within these hardware constraints, especially for regions with large inhomogeneities, such as the frontal cortex. THIS WORK investigates the hardware requirements for optimal B₀ inhomogeneity compensation and the effect of shim hardware constraints on B₀ shimming for a spectroscopy voxel in the frontal cortex.

MATERIALS AND METHODS

 B_0 maps (20 slices, $2 \times 2 \times 2mm^3$, TE/TR = 3.1ms/6.86ms, $\Delta TE = 1$ ms) of the brains of 17 volunteers were acquired at a 7T scanner (Philips Healthcare, Cleveland, USA) with a volume transmit/receive coil for transmission and a 32-element receive coil for reception (Nova medical, Wilmington, USA). Bo shim sets were calculated using an IDL-based (Exelis, Inc., Boulder, USA) Shim Tool⁴, which applies Multiple Starting Values (MSV) for the fitting procedure. The shim volume was chosen equal to a typical spectroscopy voxel $(20 \times 20 \times 20 \text{mm}^3)$ in the bilateral grey matter of the frontal cortex. A set of 3rd-order shim parameters was calculated from each B₀ map using an unconstrained fit algorithm (U), in order to determine the required shim field amplitudes of the different spherical harmonic fields for the problem at hand. Additionally a set of shim parameters was generated by clipping the results from the unconstrained fit to the hardware constraints (UCL), which is a typical procedure in vendor pre-implemented algorithms, and another set of shim parameters was calculated using a constrained fit algorithm (C). Corrected B₀ maps were simulated using the different shim sets using in-house written scripts in MATLAB (Mathworks, Natick, USA). The

standard deviation of frequencies (σ_{0}) within the shim volume was determined from each simulated B₀ map which translates roughly into half of the expected spectral line width.

RESULTS AND DISCUSSION

yield acceptable results.

Table 1 displays the maximum required shim field amplitudes for each shim channel as calculated for a spectroscopy voxel in the frontal cortex of all 17 volunteers, as well as the mean of the calculated shim field amplitudes. For ideal compensation of the strong inhomogeneities induced by the sinus cavities, the amplitude of the Z3 term would, in single cases, have to be 326.4 mT/m³, which is 105 times as strong as the hardware limitations of the used setup allow for. Even average shim field amplitudes required for ideal inhomogeneity compensation for 2nd and 3rd-order shim terms range between 1.5 times to up to 33 times of the maximum shim field that can be produced by the employed setup.

Figure 1 compares field distributions within the spectroscopy voxel, simulated with the three different sets of shim parameters. An unconstrained shim (U), i.e. a B_0 shim without any hardware limitations would obviously lead to the best inhomogeneity compensation. However, this result is in practice of little use. By clipping the parameters obtained from an unconstrained fit, to the hardware limitations (UCL), heavy field distortions result, which would most likely even prevent proper localization for a spectral acquisition. By constraining the parameter space for the fit (C), the resulting field distribution within a $20 \times 20 \times 20$ mm³ voxel, would render a spectral acquisition feasible, however severe line broadening is to be expected that might lead to an effective resolution that is worse than at 3T. The histograms in figure 2 and the standard deviation of frequencies, σ_{ω} , Lfrom simulated field distributions for all volunteers in table 2 also display, that shim sets derived by clipping the results from an unconstrained algorithm to the hardware limitations (UCL) does not lead to sufficient B_0 shim quality.

In CONCLUSION this work demonstrates that B_0 shim hardware limitations do severely restrict the meaningful application of ultra-high field magnetic resonance spectroscopy in regions that suffer from strong B_0 inhomogeneities, such as the frontal cortex. Considering constraints of the maximal shim fields during the B₀ shim optimization procedure is mandatory to

Shim	F _{max}	SFmean	SFmax
Term	mT/m ⁿ	mT/m ⁿ	mT/m ⁿ
Х	0.99	0.76 (0.44)	1.67
Y	0.99	0.35 (0.24)	0.95
Ζ	0.99	0.67 (0.65)	2.41
Z^2	4.63	25.26 (18.24)	66.71
ZX	7.88	16.34 (16.18)	55.92
ZY	7.75	12.37 (14.57)	54.40
$X^2 - Y^2$	7.52	9.25 (12.06)	41.69
XY	7.35	4.61 (3.82)	15.14
Z^3	2.82	103.70 (105.33)	326.35
Z^2X	3.76	100.24 (82.01)	320.93
Z^2Y	3.76	35.98 (48.63)	156.68
$Z(X^2-Y^2)$	23.72	211.80 (212.57)	689.97
ZXY	23.25	110.17 (98.04)	358.00
X^3	10.57	73.68 (94.96)	281.62
Y^3	10.33	35.03 (28.67)	100.11

Table 1: Comparison of the maximum available shim field amplitudes (\hat{F}_{max}) per shim channel and the mean (SF_{mean}) and maximum (SF_{max}) shim field amplitudes per channel required for optimal B₀ inhomogeneity compensation for a spectroscopy voxel in the frontal cortex. Values are given in mT/m^n , where n denotes the shim order of the respective shim term.

> 40 20

Table 2: Comparison of the mean standard deviations of σ_{ω} [Hz] frequencies (σ_{ω}) within a spectroscopy voxel in the frontal 29.50 (10.23) NS cortex derived from the simulated B_0 field distributions with the C 8.26 (6.38) constrained (C), the unconstrained (U) and the clipped (UCL)U 5.57 (4.60) shim sets, and from the unshimmed B_0 map (NS). σ_{ω} translates UCL 155.03 (85.12) roughly into half of the expected spectral line width. NS С U UCL Hz

Figure 2. the Histogram of frequency distribution within a spectroscopy voxel in the frontal cortex of a volunteer's brain without shimming (NS), and from simulated B₀ maps corrected using a constrained (C), an unconstrained (U), and a clipped (UCL) shim set.

Figure 1: B_0 maps of a spectroscopy voxel in the bilateral grey matter in the frontal cortex of a volunteer's brain, acquired without any shim (NS), and simulated B_0 maps corrected with a constrained (C), an unconstrained (U), and a clipped (UCL) shim set. For display purposes the unshimmed B_0 map is shown with a frequency offset. For comparison, the spectroscopy voxel (blue) is overlaid with an anatomical image (ANA).

[1] R. Gruetter, MRM 29, 804-811 (1993)

[3] J.C. Siero et al, Proc. Intl. Mag. Reson. Med. 17, 132 (2009)

[2] M. Schär et al, Proc. Intl. Mag. Reson. Med. 10, 1735 (2002) [4] A. Fillmer et al, MRM DOI:mrm25248 (2014)