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Target Audience Physicists and engineers interested in image reconstruction of flow 
encoded MRI data.  

Purpose Long acquisition times and image phase inaccuracies are the main concerns in 
time-resolved 3D phase-contrast (PC) MRI. Standard compressed sensing (CS) 1 scan 
acceleration techniques use sparsifying transforms designed for object magnitude with 
smooth background phase. A CS reconstruction framework separately regularizing 
magnitude and phase has been presented 2. The principle of incorporating the 
divergence-free condition of 3D blood flow directly into the reconstruction process has 
been recently proposed 3. In the present work, an efficient algorithm penalizing 
divergence and curl using finite-difference (FD) derivative filters is presented together 
with a variant of iterative divergence-free Wavelet (DFW) thresholding 4. 

Theory For 4-point PC flow measurements 5, minimizing the error functional f(m,ϕv) =
0 2

2|| ( ) ||vi ie e−d E m oo φ φ + λm||Ψmm||1 + λϕ||ΨϕKvϕv||1 (1) allows separate reconstruction of 
magnitude ∈m ℝ3N and velocity induced phase v ∈φ ℝ3N of the flow encoded segments 
(with elementwise vector product ◦, k-space data vector ∈d ℂ3M, encoding matrix E, 
regularization parameters λm,ϕ, magnitude sparsifyer Ψm, velocity vector field operator Ψϕ 
and diagonal velocity encoding matrix Kv). The vector ϕ0 captures the reference 
segment’s phase and background correction (e.g. concomitant fields or eddy currents) 
maps. During iteration step k+1, f is alternately minimized with respect to phase and 
magnitude: 1k
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method, the flow field operator is composed of divergence and curl calculations with 
relative weight γ ∈ℝ≥0: Ψϕ = [ ]T T T

div curlγΨ Ψ (4). For DFW implementation, upon 3D 
Wavelet transformations Ψx,y,z, coefficients are linearly combined using A 
resulting in divergence-free and non-divergence-free components 6: Ψϕ = 
Adiag(Ψx, Ψy, Ψz) (5). Fig. 1 illustrates the proposed FD and DFW 
algorithms with 0

0, ( )k ikdiag e=mE E m o φ
φ (12) being the modified 

encoding matrix and n denoting the sub-step within the (k+1)-th outer 
iteration step. 

Methods 4-point PC MR data were simulated based on CFD data in a U-
bend shaped tube with an approximately divergence-free fluid. A 
simulated 7-element coil array was incorporated. Complex Gaussian 
noise mimicking an SNR of 15 was added. 3D cine 4-point PC data of the 
aortic arch (6 coils, 24 heart phases, 42ms temp. res., 322x252x50.75-
57.75 mm3 imaging volumes, 1.75x1.75x1.75 mm3 voxel size, 10° flip 
angle, TR/TE = 4.7/2.4 ms) were acquired in 5 healthy volunteers on a 3T 
Philips Achieva scanner (Philips Healthcare, Best, The Netherlands). Data 
were retrospectively undersampled (3- and 6-fold) using variable density 
sampling pattern 1 in the phase encoding plane. Normalized 3D coil sensitivities were estimated 
from the temporally averaged reference segment using ESPIRiT 8. An iterative soft-thresholding 
algorithm 9 leaving the acquired data unchanged was used for standard CS 1l -Wavelet 
reconstruction. A variant of 1l -POCSENSE 10 fixing image phase was used for the magnitude 
updates (3). For the reference segment, the phase was 2l -regularized using a gradient operator 
on the phase exponential: 0 2

2|| ||ie∇ φ  2. 

Results Fig. 2 shows error, divergence, total and peak flow and streamline quantification results 
of simulated and in-vivo data (IFT: direct inverse Fourier transformation). Improvements with 
phase regularization relative to CS are seen in Fig. 2a-d and g-h. 
Direction-, divergence- and streamline-metrics are found to improve 
with increased undersampling factor. Fig. 3 illustrates velocity profiles 
and vectors of numerical and in-vivo data, respectively.  

Discussion In this work, reconstruction methods imposing the 
incompressibility of blood flow have been proposed and applied on 
simulated and in-vivo 3D PC data. Relative to convex CS, DFW and FD 
result in reduced directional error and divergence, increased 
streamline length and improved vector field visualization. With 
increasing undersampling, reconstructed vector fields are increasingly 
denoised, thereby favoring direction dependent error metrics at the 
expense of some underestimation of total and peak flow. In 
summary, phase regularization is a promising tool to enhance 
accelerated cine 3D PC-MRI. Future work will include the 
investigation of optimized sampling patterns, high spatial resolution 
and data acquisition in patients. 
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Figure 1 Reconstruction algorithms for phase updates (2). Top: Following 7, 
equation (2) is reformulated as the constrained problem (6) using auxiliary 
variables u1,2. Upon reformulation as an unconstrained problem with the 
Lagrange multiplier vectors b1,2 and tuning parameters μ1,2, alternating 
minimization with respect to u1,2 and φv including update rules (11) for b1,2 is 
used. While (7) and (8) can be solved via linear conjugate gradient (CG) and soft-
thresholding, respectively, nonlinear CG 2 is employed to solve (10). Bottom: 
After DFW shrinkage, the resulting phase exponential vector is combined with 
magnitude and background phase before the data consistency step (F: Fourier 
Transform, S: Sensitivity weighting). Upon subtraction of φ0, the phase provides 
an intermediate solution of φv.

Figure 2 Comparison of directional error a), normalized root mean squared error (nRMSEv) of
velocity magnitude b) and mean absolute divergence for numerical phantom c) and in-vivo d) data.
e,f) Errors in total and peak flow estimation relative to fully sampled reference. g,h) Relative
change in streamline length and number of streamlines reaching the end of the descending aorta.   

Figure 3 Top: Through-plane velocity profiles across indicated line reconstructed from CFD data. 
Bottom: In-plane velocity field visualization in the indicated cross-section in a representative healthy 
subject. The arrows point to differences between CS, DFW and FD reconstructions.  
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