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INTRODUCTION: 
Parallel imaging schemes like SENSE [1] and SPACE-RIP [2] accelerate the 
data acquisition in MRI by using multiple receiver coils. However, in 
practical applications, it is difficult to obtain speedup factors of the order of 
the number of coils (critical sampling case). One of the reasons is the 
redundancy in the measurements due to the inappropriate choice of sampling 
locations; this leads to the reconstructions being ill-posed for high speed-up 
factors. Kyriakos et. al. demonstrated that a heuristic choice of the phase 
encoding locations can give better reconstructions [2]. A more theoretical 
approach was introduced in [3], where they assumed the signal to be a 
stationary Gaussian random process and derived the optimal k-space lines 
that result in the minimum mean-squared-error (MMSE) reconstruction.  
    In this paper, we propose a fast method for selecting the optimal phase 
encoding locations. In contrast to [3], our algorithm only makes use of the 
sensitivity profiles and hence is signal independent. We generalize the 
sequential backward selection (SBS) [4] to derive a fast algorithm. We also 
show that the reconstructions are robust with respect to estimation errors in 
the coil sensitivity profiles.   

PROPOSED APPROACH: 
A. Problem statement 
We have a phased array of coils and we assume an image. In this 
paper, we restrict ourselves to the Cartesian scheme as in [3]; we 
choose phase encoding lines out of the uniformly spaced ones (each 
with samples along the read-out direction) that gives the minimum mean 
squared reconstruction error. Our goal is to make approach its lower 
bound , while giving well-conditioned reconstructions.   
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    We consider the same imaging equation as in [2] 
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 is the vectorized image, is obtained by 

choosing rows of the matrix . Similarly is obtained 
from (vectorization of the measurements) by choosing its corresponding 
elements. Assuming Gaussian noise and minimum variance solution of Eq. 

(1) ( ), the sum-of-squared error (SSE) of 
the reconstructed image is 
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where is the receiver noise matrix [1]. For simplicity, we consider the 
case where is identity matrix. The general case can be dealt with by using 
a Cholesky factorization [5] of matrix followed by change of variables. 
Thus, the optimal selection procedure boils down to the selection of the 
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that gives the smallest value of (2). 

B. Fast Algorithm 
The exhaustive search for the best phase encoding locations is a 
combinatorial optimization problem; its complexity is prohibitive for our 
application. Hence, we generalize the SBS algorithm [4] to seek a slightly 
sub-optimal, but fast solution. Specifically, we start from the full encoding 
matrix and sequentially eliminate blocks of  rows (each block 
correspond to samples of one phase encode line). At each step, we 
eliminate that block which gives the least increment in the cost. Instead of 
directly calculating Eq. (1), we recursively update its value according to 
Sherman-Morrison formula [5]. We use a series of speed-up techniques such 
as storing
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( − and utilizing the separability of 2D FFT. The whole 
process continues until we are left with phase encodings.  M
    The algorithm needs multiplies, as compared to multiplies 
if (2) were used directly. The time taken for optimizing the phase encoding 
locations for a image is about 15 minutes on a 2.66GHz PC. 
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C. Sensitivity Analysis 
In practical applications, the sensitivity profiles are estimated; the estimation 
errors can lead to degradation of image quality. Denoting as SSE in 
the reconstruction corresponding to the optimal , we obtain     
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where  is the condition number of . The above formula indicates )( ∗Sκ ∗S

that the drop off in the image quality is decided by the condition number of 
S
~

; we can effectively reduce it by adding a few more phase encodes as 
shown in Fig 2.  

RESULTS: 
Figure 1 shows the simulation results of the proposed algorithm with 
comparison to reconstruction from sets of lines in [2] using a 128128×  torso 
image. Four Gaussian-shaped sensitivity profiles are used with different 
orientations (one of them is shown in Fig. 2.a).  It can be easily seen from 
Fig. 1 that the proposed algorithm outperforms the conventional approaches. 
See the caption for details. 
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(b) M=48, SSE=2009 (c) M=48, SSE=1522 

(d) M=48, SSE=210 (e) M=39, SSE=826 (f) M=36, SSE=1445 
 

igure 1: Simulation results using different phase encoding lines. 
,128=N 4=L . The number of phase encoding lines and the 

econstruction SSE are shown below each subfigure. (a) corresponds to 
ENSE [1] while (b-c) correspond to patterns proposed in SPACE-RIP [2] 
or a speedup factor of 2.66. Note that the proposed method (d) results in a 
ignificantly better reconstruction in terms of reducing both SSE and 
mage artifacts. (e-f) correspond to the reconstructions at higher speed up 
actors (3.28 and 3.55 respectively). Note that the SSE is lower than (a-c) 
ven with smaller number of lines.  

 In Figure 2, we show that the proposed algorithm is robust to small 
rturbations in the coil profiles. By adding a few phase encoding lines, the 
op-off of the image quality becomes less sensitive to perturbations of the 
il profiles. See the caption for details. 
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Figure 2: Sensitivity of the proposed algorithm to coil estimation errors. 
We assume that the data is generated by the true profile given in (a) while 
the estimated profile is its noisy version in (d). (b) and (e) are the 
reconstructions using 40 lines optimized upon (a) and (d), respectively. As 
expected, (e) has artifacts due to ill-conditioning and sensitivity map 
estimation errors as compared to (b). (c) and (f) are reconstructions using 
45 lines each optimized upon (a) and (d), respectively. Note that by 
adding 5 lines, (f) is closer to (c) than (e) to (b). This is well explained by 
Eq. (3); with 5 more lines, the condition number is smaller that makes the 
drop-off in image quality less sensitive. 

(a) (b) M=40, SSE=674 

(e) M=40, SSE=1461 (d) (f) M=45, SSE=568

(c) M=45, SSE=400
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