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INTRODUCTION 

The recent advance of the parallel MRI 
technology, which utilizes multiple RF receiver array 
coils [1], has also demonstrated the capability to enhance 
the spatiotemporal resolution of MRI [2, 3]. In parallel 
MRI, there exist two major sources in image 
reconstruction: the first is the reduced data samples in 
accelerated scans compared to the unaccelerated scans. 
The second source of noise is the unfolding of the aliased 
images, which are derived from the reduced sampling and 
the Nyquist criterion in Fourier imaging. In this study, we 
focus on the efforts to reduce the noise amplification 
from this latter cause. We propose to use full field-of-
view prior information to condition the encoding matrix, 
which accounts for the genesis of the observed aliased 
images in individual RF receivers. The incorporation of 
prior information is mathematically formulated using the 
Tikhonov regularization framework. We resort to 
different approaches to estimate the regularization 
parameters, including L-curve [4], and SNR-based direct 
regularization.  

The employment of the prior information may 
decrease the contrast in dynamic scan, while the overall 
CNR performance has not been investigated. Thus we 
perform simulations and experiments to study the 
performance of the regularized parallel image 
reconstruction in functional MRI experiments. We expect 
the efforts of optimizing the parallel MRI in brain MRI 
can be utilize in the investigation of human brain 
structure and function by improved spatiotemporal 
resolution and image quality. 
 

METHOD 
 In our recent publication [4], we successfully 
derived the solution of the parallel MRI reconstructions 
incorporating the prior information using the Tikhonov 
regularization framework, including the derivation of the 
associated g-factor metric. We proposed to estimate the 
regularization parameter using L-curve technique by 
searching the “elbow” region in the plot of prior error 
versus model error in the log-log scale [4, 5]. 
Alternatively, SNR-based direct regularization method is 
the other approach to estimate the regularization 
parameter. The SNR of linear equation using whitening 
observation is then estimated as 1/)~~( −≈ c

H nyySNR , 
where 

cn  is the number of the array channel. Given the 
SNR estimate, we estimate the regularization parameter 
from the power spectrum of the singular values of the 
whitened encoding matrix by searching the singular value 
with index k such that following cost function is 
minimized: 
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 Note that here the 

regularization parameter is estimated directly without any 
iterative calculation. 

 

 
We used the commercial available 8-channel 

head array coil at 3T (MRI Devices, Waukesha, WI) to 
validate the reconstruction with/without regularizations in 
brain structural scans.  

To study the CNR of regularized parallel MRI 
reconstructions in fMRI, we performed simulations based 
on the 8-channel 3T coil described above by varying 
BOLD contrast between 1% and 5% and the size of the 
simulated activated brain region between 36 mm2 and 576 
mm2. SENSE acceleration rates were changed between 
2.00-fold, 2.67-fold and 4.00-fold accelerations. The 
averaged true positive rate of detection versus false 
positive rate of detection without regularization and with 
L-cure regularization were calculated for each condition 
separately.  

Additional demonstration of the regularized 
reconstructions was studied using a 23-channel head 
array coil by calculating the g-factors in 1D and 2D 
accelerations for our 1.5T scanner.  

We used the TSENSE/SHRUG strategies [6, 7]  
to perform fMRI experiment on 3T scanner with 8-
channel head array for block design visual fMRI (4Hz 
checkerboard). TE was 30 ms. The prior information is 
derived from the baseline condition. The detection power 
of SENSE accelerated scans were evaluated based on the 
images using the composite of all EPI segments. SENSE 
reconstructed images with the L-curve regularization and 
without regularization were calculated separately at 
different acceleration rates.  
 

RESULTS 
Figure 1 shows the benefits of suppressed noise 

in the regularized reconstructions, which are particularly 
prominent as the acceleration rate is high (acc: 4.0). 
While the regularization visually improved quality of 
reconstruction in high acceleration acquisition, 
comparing the reconstructions using L-curve 
regularization or SNR-based direct regularization shows 
minimal difference discriminated by bare eyes. 

 
Table. 1 lists the averaged g-factors in 

unregularized, SNR-based direct regularization and L-
curve regularization SENSE reconstructions for 256 X 
256 image matrix at 2.00-fold, 2.67-fold and 4.00-fold 
SENSE accelerations Note that SNR-based direct 
regularization is more computationally efficient 
compared to the L-curve approach. In most cases, the 
averaged g-factors over the whole image are smaller 

Fig. 1 
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when regularization is employed. SNR-based direct 
regularized reconstructions have smaller g-factors than L-
curve regularized reconstructions. 

 

Table 1 
regularized SENSE 

acceleration unregularized
SNR-reg. L-curve 

2.00 1.081 0.415 0.673 

2.67 1.259 1.195 0.781 

4.00 1.819 0.521 1.243 
The averaged true positive rate of detection 

versus false positive rate of detection without 
regularization and with L-cure regularization were plotted 
in Figure 2 for different BOLD contrast at 4.00-fold 
acceleration with 144 mm2 simulated active area. Along 
with additional simulations, we found that in general the 
employment of regularization improves the detection at 
all acceleration rates, BOLD contrasts and sizes of 
activation brain area in this simulation study.  
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Images of the individual channel of the 

customized 23-channel array using proton density 
weighted FLASH scans to measure SNR and coil 
coupling were shown in Figure 3, which indicated good 
localization of coil sensitivity for each individual 
channel. 

 
Simulations on the parallel imaging 

reconstructions using this 23-channel coil were shown in 
Table 2, which included both the SENSE acceleration in 
1-dimension (1D) and in 2-dimension (2D). The 
advantage of regularized reconstructions to suppress the 
unfolding noise was validated by the g-factor maps. 
Using L-curve regularization, the averaged g-factor was 
found to be 1.35±0.70, while unregularized 
reconstructions with averaged g-factor 2.00±0.55, in the 
16-fold 2D SENSE acceleration. 

 
Table 2  unregularized regularized 

4x acc. in A-P 1.319 1.036 
4x acc. in L-R 1.521 1.205 

16x acc. in combination 
(A-P/L-R) 

2.007 1.353 

Figure 4 shows the t statistics maps of 3T visual 
fMRI experiment using SENSE EPI with/without 
regularization at 3.0 and 4.0-fold accelerations. At 3.0-
fold and 4.0-fold SENSE accelerations, regularized 
reconstructions yielded larger functional activated area 
than unregularized reconstructions around the occipital 
lobe (3X: regularized: 2327 mm2; unregularized: 2139 
mm2; 4X: regularized: 896 mm2; unregularized: 735 
mm2). Figure 5 shows the ROC curves from the t-
statistical maps using 3.00-fold or 4.00-fold SENSE EPI 
acquisitions, including both the regularized (solid lines) 
and the unregularized (dashed lines) unfolding. Using 
regularization to unfold the identical SENSE acceleration 
can improve the detection power in both 3.0-fold and 4.0-
fold accelerations, as the ROC curves shift toward the 
upper-left corner.  

 

 

 
 

CONCLUSION 
 In this study, we demonstrated the suppress 
noise amplification in parallel MRI reconstructions using 
Tikhonov regularization along with L-curve and SNR-
based direct estimation of regularization parameter 
estimation. In both simulations and experiments, we used 
g-factors and ROC analysis to quantify the advantages of 
regularization, particularly in functional brain imaging. 
We expect the efforts of optimizing the parallel MRI in 
brain MRI can be utilized in the investigation of human 
brain structure and function by improved spatiotemporal 
resolution and image quality. 
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