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Introduction: Some reasons for the strong appeal of the
SENSE algorithm [1] in parallel MR are: it provides the-
oretically maximum output SNR and also minimum least-
squares estimation error, and it also offers a self-assessment
of its performance via the g-function. The purpose of this
abstract is to explain the close relationship of these proper-
ties are to the Cramer-Rao Bound (information inequality),
[2], [3]. Essentially, this bound can compare the perfor-
mance of any reconstruction algorithm (image estimator)
to the optimal (least-squares = SENSE) estimator. This is
a very powerful property. Because it quantifies algorithm
performance under very general circumstances, the Cramer-
Rao bound is widely used in many branches of electrical en-
gineering and other detection/estimation applications. For
example, in industry it is often applied to test whether a
given algorithm (not necessarily least-squares!) is close to
the theoretical limits of its performance. Although used in
other medical imaging applications, e.g. [4], the Cramer-
Rao bound does not seem to have been considered in the
parallel MR literature to date.

What is the Cramer-Rao Bound (CRB)? To give a
brief quantitative description of the CRB, we need nota-
tion for the least-squares estimator of an N-pixel MR image
x = (x1,a,...,zN), based on space-domain measurements
z = (z',22,...,2™) taken from M receiver coils. In the
usual notation of filtering theory [3], the least-squares esti-
mator L of x would be written x = Lz = PH'R™'z. Here,
P = (H'R™'H)~! is the least-squares estimation error co-
variance, and the measurement model is z = Hx+v, where
measurement noise v has covariance R. Equivalently, in
SENSE notation, x = (E"W~'E)"1E'U~ 1z where E = H
is the encoding matrix and ¥ = R. Suppose F' is some other
general unbiased, linear estimator— i.e. an MR reconstruc-
tion algorithm which need not be the least squares SENSE
method— and that the noise is Gaussian. Then the Cramer-
Rao bound says the error covariance X of this other esti-
mator F' is bounded below by that of the optimum (least-
squares) estimator L, that is, ¥ > P = (E1¢~1E)~!
This is a comparison of non-negative definite matrices, not
a component-by-component bound. More generally, there
are non-Gaussian, nonlinear versions of the CRB available,
and also alternatives such as the Barankin or Tichavsky-
Nehorai bounds. For non-Gaussian problems, P must be
replaced by the inverse information matrix. There is not
enough space here to include the hypotheses required for
the validity of these bounds, but it is important to check
them, e.g. they fail for the uniform distribution.
Example: Data was acquired on a 4-coil water phantom
using a special-purpose 4-element receiver coil array in
our 1.5T GE Signa MR scanner, using a fast spin-echo
sequence; a separate off-line acquisition was used to esti-
mate the coil sensitivity functions. Figure (1a) shows the

Cramer-Rao lower bound for image reconstruction from
fully-sampled data, expressed in dB because the signal-
to-noise ratio is very high for this experiment. Just like
the g-function, the bound predicts that the greatest er-
rors will occur at the center of the image, farthest from
the array elements— this should not be surprising. As
an algorithmic challenge, the data was subsampled by a
factor of 2 both in the horizontal and vertical directions,
which is the fastest rate that will support invertibility of
the reconstruction equations. The Cramer-Rao bound now
shows that the biggest errors are to be expected in regions
with the largest amount of foldover from the original image.

Fig.1: Cramer-Rao Lower Bound on Error, in dB
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SNR Performance: A very 1nterest1ng 111&.1ght7 which is
implicit in [1], is that the usual lower bound on the es-
timation error also gives rise to an wupper bound on out-
put signal-to-noise ratio. For simplicity, we consider the
estimate just of pixel x;, obtained from the ith row of
F, denoted f]. Using the fact that the general CRB im-
plies a particular special case for diagonal elements, namely
B = ff Rf; > P,;, we obtain
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In the second expression, “E” is the expectation operator
(averaging). Using the assumption of unbiasedness was
crucial in order to obtain the third expression. The unbi-
ased condition is referred to as an orthogonality condition
in [1]. Note that maximizing SNR is not always equivalent
to minimizing least-squares error. See [5] for a counterex-
ample, and for relationships with the MR phased array [6].
Conclusions:  Basically, the ¢ function is a ratio
pajias /piull that compares performance for aliased and
fully-sampled least-squares problems. By contrast, it is not
necessary to take ratios in the bounds we have described
here, and they can be applied to get insight on perfor-
mance of other reconstruction methods, which are not least-
squares. Like the g-function, these bounds give geometric
insight into the spatial distribution of errors.
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